Extension of TAPENADE towards FORTRAN9X

Valérie Pascual, Laurent Hascoét
TROPICS team, INRIA Sophia-Antipolis, France

1 Introduction

We present the extensions to the Automatic Differentiation tool TAPENADE [5]
towards FORTRANIX [7]. Other AD tools already took this direction, such as
TAF [3, 6]. ADIFOR [2] already considered the question of structured types.

We recall the internal architecture of TAPENADE, with a central module
for program analysis and transformation, surrounded by language-specific
front-ends and back-ends. This allows the central module to forget about
mostly syntactic details of the analyzed language, and to concentrate on the
language’s semantic constructs. To this end, TAPENADE defines an internal
abstract language, called IL, able to represent all constructs of classical im-
perative languages. In particular, extension to FORTRAN9X drove us to add
several new constructors into IL. Furthermore, programs are internally repre-
sented as Call Graphs, Control Flow Graphs [1], and syntax trees only at the
deepest level of individual instructions. This yields a general representation
for all control structures.

Concerning FORTRANIX concrete syntax, everything is taken care of by
a specific new parser (front-end) and pretty-printer (back-end). The main
novelty with respect to FORTRANTT is the long awaited “free format”, where
statements may start in column 1 instead of 7. Our new FORTRAN9X parser
accepts programs that combine the old “fixed format” and the free format,
and the back-end can regenerate programs using both formats. Thanks to
the internal representation as Control Flow Graphs, new constructs such as
the SELECT CASE were easily added and treated by the differentiation engine
as any other flow of control.

In this paper, we focus on the new features of FORTRAN9X that required
us to make important choices and improvements into TAPENADE. We put
these features into four categories: section 2 deals with the nesting of mod-
ules, subprograms, and interfaces, section 3 deals with the introduction of
structured types, unfortunately called “derived” types, section 4 deals with
the new overloading capabilities, and section 5 deals with array notation for
vectorial computers. Section 6 concludes on the soon to come pointer analy-
sis, and the more distant extension to objects. The full version of this paper
presents some illustrative examples.

2 Nesting of modules and subprograms

The internal representation had to be extended to capture the new nesting
capabilities, with modules, internal/external subprograms, and interfaces.
The structure of FORTRANT7 was flat, apart from internal subprograms in
some dialects.

We chose to introduce an internal tree representation of modules nesting,
in addition to the existing Call Graph. Each node stands for one “unit”, i.e.
subprogram or module, and holds the list of its enclosed units. In particular,
the regenerated program must comply with this unit tree structure, so that
this program is stand-alone and can be compiled directly. Each unit defines
two symbol tables, for the public and private symbols (i.e. arguments, vari-
ables, subprograms, types, etc). Of course private symbol table is nested into
the public. Symbol table nesting already existed in TAPENADE for scoping.
The USE statement just states that a unit has access to the public symbol
table of a module.

Classically, program analyses and transformations need to run in an ap-
propriate order on the subprograms, depending on the Call Graph. The
novelty is that this order now must take into account the USE of modules.
Moreover, recursion may introduce cycles in this dependence, so the best
order can only be an approximation.

When differentiation is concerned, the question is what must belong to
a differentiated unit. When FORTRANT7 was concerned, differentiated sym-
bols could be defined independently from their original symbols. Now that
modules can define their own private symbols, some differentiated unit must
often be declared in the same context as its original unit, i.e. must live inside
the same enclosing module. In general the question is whether the differen-
tiated object can exist independently of the original object, or must they
be attached inside the same enclosing level. For example a differentiated in-
struction must be in the same subprogram as the original instruction because
they share a common control. Similarly a differentiated subprogram must
be in the same module as the original if both access a private field of this
module. On the contrary, a differentiated field x of a structured type T need
not be added into T, but can rather go into a stand-alone “differentiated”
structured type T’, therefore saving memory space.

3 Structured or “derived” types

FORTRANIX allows the user to define “derived” types in order to manipu-
late composite objects containing several components. As we said above,

our choice during differentiation is to define a differentiated structured type,
whose fields hold the derivatives of the original fields. However, it happens
that some variables of a structured type have only some components that
are active. Then the differentiated type need not allocate space for the other
components. Differentiated structured types may depend on the activity pat-
tern. On the other hand, we don’t want to specialize too far, creating several
differentiated types for a given structured type. Therefore, our choice is
very similar to differentiation of subprograms with several activity patterns:
there is only one differentiated type T’ for each structured type T. During
activity analysis, if a component x of some variable of type T can be active,
the differentiated type T’ must hold a component x too. The price for this
non-specialization is that sometimes, a differentiated variable of type T’ will
not use all of its components.

4 Overloading

Overloading is being able to call different subprograms by the same generic
name. Whereas overloading in Object Oriented languages is resolved only
at run time, the limited form of overloading in FORTRAN9X can be resolved
statically at compile time, and therefore at differentiation time. This is done
during the type-checking phase. Notice furthermore that FORTRAN9X also
allows the user to overload predefined operators such as +, =, *, /, or the
assignment =.

We must thus modify the type-checking algorithm carefully. Each use
of a predefined operator or call to a subprogram is compared to available
overloaded subprograms according to the arguments’ types. If necessary, it is
replaced by a standard subprogram call, and treated as such in the following
differentiation phase. After type-checking stage, overloading is resolved.

When differentiation is concerned, the predefined operators are treated
in a very particular, built-in manner. So we must be careful not to replace
these operators by ordinary subprograms calls when not necessary.

5 Array features

The vectorial programming concepts of FORTRAN9X are represented through
syntactic notations and intrinsic functions. In FORTRAN9X programs, it is
possible to use arrays globally. In the differentiated program, we keep this
property whenever possible and we also treat differentiated objects globally.

Notice that array notation can be advantageous for static data flow anal-

ysis. A global reset of an array to a constant, for example, can easily be
detected and the array is considered “killed”, whereas the equivalent loop
requires array region analysis to reach the same conclusion.

When differentiation is concerned, intrinsic array functions are divided
in two categories: the SUM intrinsic and the SPREAD intrinsic (which is often
implicit) have a special behavior. In particular the adjoint of a SUM is a
SPREAD, and vice-versa. Actually these two intrinsics blend into the inter-
nal representation for partial derivatives, and reappear when generating the
differentiated code.

For example the following vectorial instruction:

A(0:100:3) = x * SUM(B(:))
is differentiated in the reverse mode using the transposed local Jacobian:

*

) 0 SUM(B(:)) x 0 0 0
{M} o 0 | =| smM@®:)) Id 0
d[A,z, Bl 0 0 1d X 0 Id

which is a block matrix and yields the adjoint instructions:
X =X+ SUM(B(:))*SUM(A(0:100:3))

B(:)= B(:)+ x*xSUM(A(0:100:3))

A(0:100:3) = 0.0

All the other array intrinsics are treated like black-box routines, whose
differentiation is given to TAPENADE in special library files.

6 Conclusion

The next development of TAPENADE for FORTRAN9X will concern pointers
and dynamic allocation. We plan to share this with the programmed ex-
tension to C. In the long run, we also consider extending TAPENADE to the
object programming concepts from C++ or JAVA. This will introduce dy-
namic overloading, which is still a challenge for automatic differentiation.
For example, the activity pattern of the actual parameters of a given call
may contribute to the activity pattern of several subprograms.

TAPENADE can be utilized as a server at the url
http://tapenade.inria.fr:8080/tapenade/index. jsp
It can be downloaded from ftp://ftp-sop.inria.fr/tropics/tapenade

References

1]

2]

3]

[4]

[5]

[6]

7]

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

A. Carle and M. Fagan. ADIFOR 3.0 overview. Technical Report CAAM-
TR-00-02, Rice University, 2000.

R. Giering, T. Kaminski, and T. Slawig. Applying TAF to a Navier-
Stokes solver that simulates an Euler flow around an airfoil. In 7o
appear in Future Generation Computer Systems. Elsevier Science, 2004.
[http://www.fastopt.com/papers/gieringal02.pdf].

A. Griewank. Fvaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. STAM, Frontiers in Applied Mathematics, 2000.

INRIA Tropics team. On-line documentation of the TAPENADE AD
tool. Technical report. [http://www.inria.fr/tropics].

T. Kamingki, R. Giering, M. Scholze, P. Rayner, and W. Knorr. An ex-
ample of an automatic differentiation-based modelling system. In Com-
putational Science - ICCSA 2003 - Lecture Notes in Computer Science.
Springer, 2003. [http://www.fastopt.com/papers/kaminskial03.pdf].

M. Metcalf and J. Reid. FORTRAN 90/95 explained. Oxford University
Press, 1996.

